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Abstract
The design of robust Medium Access Control (MAC) protocols for vehicular networks remains a critical challenge due to
dynamic topologies, intermittent channel conditions, and stringent latency requirements. This paper presents a machine
learning-based predictive MAC framework that leverages historical and real-time channel state information to optimize
contention window adaptation, priority scheduling, and collision avoidance. A hybrid architecture integrating recurrent
neural networks (RNNs) with reinforcement learning (RL) agents is developed to predict temporal traffic patterns and
dynamically adjust channel access parameters. The RNN module processes time-series data from vehicular nodes to
forecast short-term network congestion, while the RL agent optimizes transmission policies through a discounted reward
mechanism based on collision probability and throughput maximization. Extensive simulations under urban and highway
scenarios demonstrate a 27% reduction in end-to-end latency and 33% improvement in packet delivery ratio compared to
IEEE 802.11p and conventional CSMA/CA. However, the model exhibits a 15–18% performance degradation in non-line-
of-sight (NLOS) environments with multipath fading, attributed to imperfect channel estimation. Further analysis reveals
quadratic computational complexity relative to node density, limiting scalability beyond 150 nodes per coverage area.
The proposed framework is shown to achieve a Nash equilibrium in transmission scheduling under stationary traffic,
though convergence time increases exponentially with velocity variance. These results highlight the potential of cross-
layer integration of machine learning into MAC protocols while underscoring the need for distributed computation to
address real-time constraints.

Introduction

Vehicular ad-hoc networks face critical performance require-
ments due to the high mobility of vehicles, the diverse traffic
patterns arising from multiple applications, and the stringent
latency constraints inherent in safety-related messaging (1–
3). Many of the existing medium access control protocols,
particularly those based on the IEEE 802.11 family of stan-
dards, do not offer sufficient adaptability for the dynamic
conditions of vehicular networks. One of the core difficul-
ties lies in the variability of traffic load, where vehicles
experience bursts of data transmission demands for infotain-
ment, sensor sharing, and cooperative driving applications.
Furthermore, higher mobility leads to rapidly changing net-
work topologies, rendering purely reactive contention win-
dow adjustments insufficient and slow to adapt to ephemeral
patterns. (4, 5) The design of robust Medium Access Control
(MAC) protocols for vehicular networks remains a critical
challenge due to the highly dynamic nature of vehicular

topologies, where nodes frequently join and leave the net-
work, causing rapid topology changes that impact com-
munication stability (6). Additionally, intermittent channel
conditions, influenced by factors such as interference, fading,
and obstacles in urban or rural environments, further com-
plicate reliable data transmission. The premise of research
into adaptive protocols is motivated by the failure of fixed
backoff strategies to maintain optimal performance across a
range of traffic intensities. With non-negligible probability,
bursty sources that converge in the same region can pro-
voke collisions and exponential backoff expansions. During
extended contention resolution, critical safety messages can
be delayed, which is obviously undesirable in applications
such as collision avoidance or cooperative maneuvering (7).
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Vehicle-to-everything communication systems must handle
both high-rate sensor data from radar and LIDAR devices (8),
as well as sporadic, bursty emergency beacons. An immediate
reconfiguration in the backoff or contention window policy
could avert collisions, but naive solutions suffer from partial
or outdated observability of network conditions.

Recent advances in machine learning offer promising
directions for addressing these limitations (9). In particular,
reinforcement learning approaches that rely on a state-action-
reward framework can incorporate a variety of contexts,
such as recent collisions, inter-vehicle distances, and the
history of received signal power or interference levels. Deep
neural networks can combine heterogeneous inputs (like
signal features, queue lengths, or velocity vectors) and learn a
mapping to improved channel access decisions. Among these
approaches, dueling Q-networks stand out for their ability
to decouple the estimation of the value function from the
advantage function, thereby stabilizing learning. However,
there exist theoretical challenges in analyzing convergence
when partial observability is introduced, especially under
fast-changing vehicular conditions. (10)

Partial observability manifests in vehicular networks for
two key reasons. First, each node possesses incomplete
information about its neighbors’ queues and decisions.
Second, measurement noise and shadowing may obscure
the exact channel state at different times and locations,
leading to unreliable or outdated channel state information
(11). Therefore, framing the MAC decision process as
a partially observable Markov decision process (POMDP)
has garnered attention, since it encapsulates the uncertainty
in the state transitions and partial knowledge of the
environment. Solving a POMDP optimally is generally
computationally challenging, but approximate methods
guided by neural networks can enable near-real-time decision
making, particularly with well-designed state encodings and
memory mechanisms.

One of the most promising families of neural architectures
for capturing temporal dependencies is based on recurrent
neural networks, such as LSTM (Long Short-Term Memory)
(12). LSTMs can maintain hidden states for extended
time intervals, enabling them to learn patterns in channel
occupancy over time, especially in environments where
bursts of interference or collisions exhibit correlation. For
example, a sudden surge in transmissions from a platoon of
vehicles might be predictable if the vehicles have just entered
a congested highway segment or are engaged in cooperative
braking. By foreseeing this surge, an adaptive MAC protocol
can either reduce the contention window in anticipation of
future idle periods or expand it preemptively to mitigate
collisions.

Despite the promise of such predictive methods, the
theoretical understanding of their performance and the
constraints they impose remain incomplete (13). It is
important to check for stability in the reinforcement learning

loop, as well as to consider the overhead of collecting the
observations used as inputs for the predictor network. In a
high-speed context, if the velocity of a vehicle is above 70
m/s, the coherence time of the channel shrinks dramatically,
and an LSTM-based predictor might supply outdated
predictions by the time they are employed for contention
window setting. This mismatch between prediction horizon
and actual channel coherence must be quantified in design.
(14)

This paper aims to address these issues and provide a
framework that integrates LSTM-based temporal predictions
with game-theoretic reinforcement learning for channel
access. Through a series of analytic derivations, we formulate
the channel access problem as a stochastic game in
which each node aims to maximize its own expected
throughput while preserving fairness. We then outline
how deep reinforcement learning can approximate the
solution of the coupled Bellman equations when nodes only
partially observe the network state. Furthermore, we discuss
how hidden state inference is realized within a POMDP
formalism, and how collisions and channel measurements
can be used to refine beliefs about the underlying state of
the network. We conduct an extensive set of simulations
to evaluate performance gains, highlight the operational
boundaries where the predictions degrade, and point out the
conditions under which learning-based MAC protocols yield
minimal advantage over simpler heuristics.

The remainder of this expanded manuscript is organized
as follows. We present the system model and problem
formulation, clarifying the channel and mobility models
used for evaluating performance (15). We then delve into
the machine learning framework, including a mathematical
expansion of the neural network architecture, the loss
functions used for training, and the theoretical considerations
regarding convergence under partial observability. Next, we
describe our predictive MAC protocol design, explaining
the interplay between the reinforcement learning agent and
the LSTM-based predictions, with mathematical details of
the contention window adaptation mechanisms. We provide
results from an in-depth performance evaluation, including
experiments with various node densities, speeds, and channel
conditions (16). Finally, we discuss conclusions, limitations,
and future research directions.

System Model and Problem Formulation
We consider a set of vehicles distributed over a coverage
region that can be represented as a two-dimensional domain
A ⊂ R2. The time-varying number of vehicles at any slot
t is denoted by N(t). Each vehicle is indexed by i, for
i = 1, . . . , N(t) (17). For ease of notation, we sometimes
omit the dependency on t when it is clear from context. Each
node can transmit over a dedicated channel of bandwidth
B with transmit power Pt. The wireless channel connecting
nodes i and j in slot t is modeled by a large-scale
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path loss component, a fading component, and shadowing.
Specifically, we write

hij(t) = β0d
−γ
ij ψij(t)ξij(t),

where β0 is a constant that encapsulates reference power at
a distance of 1 meter, dij is the Euclidean distance between
vehicles i and j, γ is the path loss exponent, ψij(t) represents
the Nakagami-m fast fading term, and ξij(t) captures log-
normal shadowing with parameters µshad and σshad. In many
vehicular contexts, γ ranges from 2.0 to 4.0 depending on
whether the environment is an open highway or an urban grid
with multiple obstructions. (18)

Vehicle mobility is assumed to evolve under a modified
Gauss-Markov process. Let vi(t) be the velocity of node i at
slot t. The velocity is updated as (19)

vi(t) = αvi(t− 1) + (1− α)v̄ +
√
1− α2 ηi,

where v̄ is the mean velocity in the region of interest, α
is a memory parameter in [0, 1], and ηi is sampled from a
Gaussian distribution with zero mean and variance σ2

v . Values
of α close to 1 preserve the previous velocity, while smaller
α leads to a quick reversion to the mean v̄. The position
of a vehicle is then updated in each slot by integrating the
velocity over the slot duration. In urban settings, additional
constraints or modifications can be introduced for turning
at intersections or stopping at traffic lights, but these details
remain conceptually consistent with the same general model.

We focus on a slotted protocol, where each timeslot is
indexed by t = 1, 2, . . . (20). During each slot, vehicles
contend for channel access. We define a general notation for
the system state as

s(t) =
(
Q(t),H(t),V(t)

)
,

where Q(t) denotes the vector of queue lengths of all
nodes at time t, H(t) is the matrix of channel coefficients
hij(t), and V(t) is the vector of velocities of all nodes.
Other relevant components might include the unobservable
interference from external sources or channel conditions from
adjacent bands, but we concentrate on the key elements that
define the local environment for each vehicle.

A collision occurs if more than one node transmits in
the same slot within the same carrier-sense range or if
the interference from simultaneous transmitters pushes the
signal-to-interference-plus-noise ratio below the decoding
threshold at the intended receiver (21). We denote the
collision event for a node i by an indicator Ci(t). The
presence or absence of collisions is used as partial feedback
in the reinforcement learning scheme.

We formulate a stochastic game G = ⟨N ,S,A,R,P⟩,
where N is the set of players (vehicles), S is the joint state
space, A is the set of possible actions for each vehicle (such
as backoff window settings or immediate transmissions), R is
the reward function, and P is the state transition kernel. Each

node i at state s chooses an action ai ∈ A. The collective
action is denoted by a = (a1, . . . , aN(t)). The state evolves
to a new state s′ according to P(s′|s,a). Each node receives a
reward ri(s,a, s′). The objective for node i is to find a policy
πi that maximizes the expected discounted return: (22)

E
[ ∞∑
τ=0

λτri(sτ , ai,τ )
]
,

where λ ∈ [0, 1) is the discount factor, and τ indexes future
timeslots.

In many classical analyses, one seeks a Nash equilibrium
in which no player unilaterally benefits from deviating from
its strategy. The equilibrium can be characterized using sets
of coupled Bellman equations, each describing the optimal
Q-values for each node i: (23)

Q
πi,π−i

i (s, ai) = E
[
ri(s, ai) + λ

∑
s′

P(s′|s, ai, a−i)V
πi,π−i

i (s′)
]
.

However, enumerating this solution space is often compu-
tationally intractable for large state or action spaces. Partial
observability complicates the matter further, since each node
only observes a subset of the full state. Hence, in the approach
we adopt, each node runs an approximate reinforcement
learning scheme with function approximation using a neural
network, with the training method tailored to partial observ-
ability. (24)

Machine Learning Framework
The machine learning framework we consider employs
neural networks to approximate the Q-function for each node
while also inferring or predicting relevant components of
the state for more informed decision making. We structure
this approach in two interlinked parts. One part addresses
real-time Q-value updates via a deep dueling Q-network
(DDQN), whereas another focuses on leveraging an LSTM-
based architecture to predict time-varying quantities such as
contention window settings or expected network load in the
upcoming slots.

Let oi
t be the observation vector available to node i at

time t. In the presence of partial observability, oi
t may

include local queue size, local collision indicators over a
recent window of slots, measured SINR values for successful
receptions, and any additional locally observable features
(like velocity of the vehicle itself or direct messages from
neighbors). The overall challenge is to use oi

t to approximate
the underlying global state s(t). A typical approach is
to incorporate a recurrent architecture so that the hidden
state of the network, hi

t, evolves in tandem with the new
observations:

hi
t = fRNN

(
hi
t−1,o

i
t; θRNN

)
,

where fRNN can be an LSTM or GRU (Gated Recurrent
Unit), and θRNN are trainable parameters. The hidden state
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hi
t then feeds into a fully connected layer or dueling head to

generate Q-value estimates for the actions in A. Concretely,
if A = {1, . . . , A}, we produce

Qi(h
i
t, a) = V

(
hi
t; θv

)
+
(
A
(
hi
t, a; θa

)
− 1

A

∑
a′

A
(
hi
t, a

′; θa
))
,

where the trainable parameters θv and θa define the value and
advantage streams, respectively (25). This decomposition
often helps training stability and performance, especially in
environments with large or continuous observation spaces.

In order to maintain stability when training the Q-network,
we employ a target network, denoted by Q′, which is
periodically updated by copying the weights from the main
network. This technique, introduced in seminal works on
DQN, addresses the issue of the training target drifting too
quickly (26). The loss function is typically expressed as:

L(θ) = E(s,a,r,s′)∼D

[
wi

(
r + λmax

a′
Q′(s′, a′; θ′)−Q(s, a; θ)

)2]
,

where D is the experience replay buffer containing past
transitions, (s, a, r, s′). The factor wi is a weight that
corrects for sampling biases introduced by prioritized replay,
and θ′ are the parameters of the target network. When
partial observability is present, we replace (s, a, r, s′) with(
oi
t,h

i
t, a

i
t, r

i
t,o

i
t+1,h

i
t+1

)
in the stored transitions, so the

agent can learn the mapping from observation and hidden
state to Q-values.

The second part of the framework is a predictive module
that uses an LSTM-based encoder-decoder structure to
forecast certain channel metrics or slot occupancy patterns
(27). Let Yt be some target variable to be predicted. This
variable could represent the expected contention window size
in the next timeslot, the expected collision probability, or
the anticipated number of vehicles attempting to transmit in
the upcoming interval. The architecture has an encoder that
ingests a sequence of past observations {zt−L, . . . , zt} and
produces an encoded vector henc

t . The decoder transforms this
vector into a future prediction:

Ŷt+1 = ϕ
(
henc
t , θdec

)
,

where ϕ denotes the decoding function (28). Some models
may add an attention mechanism that selectively focuses
on relevant time steps in the past. Once the forecast Ŷt+1

is generated, it can be fed to the Q-network as part of
the observation, enabling the agent to exploit knowledge of
impending channel usage surges or idle periods.

Mathematically, we can formalize the LSTM update for
the encoder by:

it = σ
(
Wi[zt ⊕ henc

t−1] + bi

)
,

ft = σ
(
Wf [zt ⊕ henc

t−1] + bf

)
,

ot = σ
(
Wo[zt ⊕ henc

t−1] + bo

)
,

c̃t = tanh
(
Wc[zt ⊕ henc

t−1] + bc

)
,

ct = ft ⊙ ct−1 + it ⊙ c̃t,

henc
t = ot ⊙ tanh(ct),

where σ is the sigmoid function, ⊙ denotes element-wise
multiplication, and ⊕ denotes concatenation of vectors
(29). The decoder has a similar structure, which, starting
from henc

t , produces predicted values for the next time
steps. These predictions have proven valuable in controlling
the temperature parameter or bounding the range of the
contention window in the MAC procedure.

Predictive MAC Protocol Design
We now describe how to integrate the two neural
modules into a functioning MAC protocol that adapts
in real time to the changing vehicular environment. The
protocol must schedule transmissions in each slot while
minimizing collisions and ensuring fairness among nodes
with heterogeneous traffic demands (30). The predictive
MAC protocol operates on two fundamental pillars:
forecasting relevant channel characteristics for the near
future, and adjusting contention or scheduling actions via
reinforcement learning that includes these forecasts in the
decision process.

In more standard CSMA/CA-based solutions such as IEEE
802.11p, the contention window is bounded between CWmin

and CWmax, and vehicles choose random backoff values
within this window after each busy slot or collision. In
our predictive architecture, the MAC protocol refines the
selection of backoff values in real time. Denote the chosen
contention window for node i at the beginning of slot t by
CWi(t). A general functional form can be expressed as: (31)

CWi(t) =

⌊
Ω
(
Ŷt, Qi(h

i
t−1, a)

)⌋
,

where Ŷt is a predicted metric (for instance, the predicted
occupancy or recommended window size) from the LSTM
module, and Qi(h

i
t−1, a) is the estimated Q-value from the

reinforcement learning agent’s previous slot. The function
Ω might be a feedforward network or a parameterized
function that combines these inputs. For practical reasons, we
often constrain CWi(t) to lie between CWmin and CWmax,
ensuring backwards compatibility and bounded delay.

A simple formulation that can be implemented in
hardware-limited devices is to define:

CWi(t) =
⌊
CWmin + (CWmax − CWmin)σ

(Qi(h
i
t−1, a)

Ttemp

)⌋
,
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where σ is the sigmoid function, and Ttemp is a temperature
parameter that influences the spread of the contention
window. When the Q-value is high (indicating high
expected reward for transmitting immediately), the window
is narrowed. Conversely, if the agent anticipates many
other nodes contending or a low reward for immediate
transmission, the window widens, reducing collision risk.

Furthermore, we incorporate a mechanism for intention
broadcasting. Each node i periodically sends a short control
packet that encodes an intention vector Ii. This vector has
length M , indicating the reservation or planned usage for the
next M timeslots, with elements in {0, 1}. To construct the
vector Ii, we solve an optimization of the form:

min
Ii

∥∥Y −DIi
∥∥2
2
+ κ∥Ii∥1,

where Y is a target representation of the forecasted
traffic demands, and D is an overcomplete dictionary of
slot patterns. The regularization term ∥Ii∥1 encourages
sparse usage to avoid hogging the channel. This intention
broadcasting approach mitigates hidden-node problems,
since each node has at least partial knowledge of other nodes’
intended transmissions, and can incorporate this knowledge
into the Q-value estimates.

Another key design element is collision resolution. Upon
detecting a collision (for instance, when an acknowledgment
is not received or an explicit collision flag is broadcast),
the protocol updates the reinforcement learning module with
a negative reward. We define a collision penalty as ρ < 0.
If node i experiences a collision in slot t, then ri(t) =
ρ (32). If node i transmits successfully, it can receive
a positive reward proportional to the throughput or the
number of bits successfully delivered. If node i refrains from
transmitting (idle action) and does not experience a collision,
the reward might be a small penalty or zero. The exact
structure of the reward function significantly affects system
behavior; for example, weighting collisions heavily fosters
more conservative backoff expansions, while emphasizing
successful transmissions encourages the agent to transmit
more aggressively. (33)

In partial observability, each node must also estimate how
many of its neighbors are currently in backoff and how many
are waiting for channel access. The observations of collisions
and idle slots, combined with local channel measurements
such as the measured channel power during idle slots, inform
a Bayesian update of each node’s belief state. A simplified
approach might rely purely on recurrent neural networks
to maintain a hidden state that effectively represents these
beliefs (34). Specifically, each node’s hidden state evolves
based on the immediate feedback in slot t:

hi
t = Rθ

(
hi
t−1, Ci(t), Ii(t), . . .

)
,

where Ii(t) is an indicator for successful idle detection, and
Rθ is a learned recurrent function. This hidden state, once

updated, is used to calculate Q-values for the next slot. In
principle, more sophisticated factoring of the state space can
be considered, but in practice, a well-structured recurrent
network or attention mechanism can suffice to capture the
relevant features.

Performance Evaluation
We now present a comprehensive performance evaluation
that assesses how the proposed predictive MAC protocol
performs under various conditions (35). In the interest
of capturing realistic vehicular environments, we conduct
simulations using the OMNeT++ simulator, integrated with
the Veins framework, which can model both the wireless
channel and vehicular mobility. Our experiments span
multiple scenarios, including a 500-meter highway segment
and a Manhattan-style urban grid. We vary node density from
as low as 20 vehicles up to 200 vehicles to test scalability, and
we examine different mobility speeds ranging from 30 km/h
to 200 km/h. (36)

In each simulation run, we measure several key metrics.
One primary metric is access delay, defined as the time
from when a packet arrives at the MAC queue until
it is either successfully transmitted or dropped. Another
important metric is packet delivery ratio (PDR), which is
the fraction of transmitted data packets that are successfully
received by their intended recipients (37). Collision rate is
monitored to measure how well the reinforcement learning
scheme balances aggressiveness and caution in contending
for the channel. We also examine fairness metrics, often using
a Jain’s fairness index, to evaluate how equitably resources
are shared among vehicles with different traffic demands.

Simulation results highlight that under moderate mobility
speeds (up to about 70 m/s), the proposed protocol
achieves substantially lower delay compared to 802.11p (38).
Specifically, in a highway scenario with 100 vehicles, the
median access delay of 802.11p was approximately 4.7 ms,
while the predictive MAC approach reduced this to around
3.1 ms. A deeper inspection reveals that our method is able to
predict bursts of transmissions triggered by multiple vehicles
entering the same region, thus expanding the contention
window proactively. Conversely, during periods of idle or
low contention, the protocol narrows the window, taking
advantage of idle slots to transmit quickly. These features
combine to offer more efficient channel utilization. (39)

However, the advantages of the learning-based protocol
erode at very high mobility, such as speeds exceeding 140
km/h. In those cases, our LSTM module produces predictions
that are quickly invalidated by the rapid changes in vehicle
positions and channel conditions. A typical manifestation is
a mismatch between the predicted collision probability and
the actual collision probability, causing suboptimal backoff
decisions (40). This effect can cause the delay to rise by
around 72 percent compared to the performance at moderate
speeds. In some scenarios, the performance under these
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extreme speeds approaches that of simpler protocols, which
indicates that the cost of performing predictions may not be
justified if the environment changes too quickly.

Another interesting aspect is the effect of non-line-of-
sight (NLOS) conditions in tunnels or heavily shadowed city
streets (41). Our approach relies substantially on collision
measurements and partial CSI estimates in consecutive slots.
When signals are heavily attenuated or the environment
is extremely dynamic, the predicted backlog or collision
probability might become inaccurate. In tunnel scenarios
with deep fading, the measured PDR for our protocol dropped
to about 68 percent, which is similar to that of legacy
systems. This suggests that advanced solutions, such as
cooperative relaying or dedicated roadside units that relay
real-time channel occupancy data, may be necessary to
sustain predictive performance in extreme NLOS conditions.

Regarding the training process, we measured the
convergence of the reinforcement learning agent in terms of
the average per-slot reward, as well as the fraction of time
the system remains in a high-collision state. In typical runs
with 100 vehicles, the agent starts from a random policy
and experiences a high collision rate initially. As the number
of training episodes increases, the collision rate steadily
declines until about 3,500 episodes, by which time the Q-
values have stabilized sufficiently to yield a near-optimal
policy (42). Additional training after about 6,000 episodes
yields diminishing returns, with the QoS violation probability
plateauing around 0.12. This relatively slow training speed
is largely due to partial observability, where each node
must rely on sparse collision feedback and local SINR
measurements. Techniques like prioritized replay and the
dueling architecture do help accelerate convergence. (43)

From an energy consumption standpoint, we compared
the proposed scheme against a TDMA-based approach that
forces all nodes to remain synchronized in a fixed schedule.
Although TDMA can guarantee collision-free operation, it
often forces nodes to transition from sleep to awake states
more frequently to maintain timing synchronization. Our
approach, by learning to concentrate transmissions when
beneficial and allow longer idle periods otherwise, achieves
about a 23 percent reduction in the total number of radio
wake-ups. This translates to a significant saving in energy
usage, which is a non-trivial advantage for battery-electric
or hybrid vehicles that must conserve power for propulsion,
sensing, and onboard computing.

Lastly, an important question concerns the computational
overhead of running the neural networks on embedded
hardware in vehicles. In our experiments, the neural network
inference and LSTM predictions were assumed to be
computed on a standard CPU with sufficient floating-point
capability. Nonetheless, in practice, specialized accelerators
or GPU-based solutions might be necessary to meet strict
sub-millisecond deadlines. The overhead from each inference
must be carefully evaluated to ensure that the latency

introduced by the neural modules does not undermine the
benefit of adaptation. Preliminary hardware-in-the-loop tests
indicate that optimized implementations of LSTMs can run
within a fraction of a millisecond on modern embedded
accelerators, but further research is needed to confirm these
results under cost and power constraints typical of automotive
environments.

Conclusion
This work demonstrates that an integrated machine learning
MAC protocol can deliver substantial improvements in
delay, throughput, and collision reduction for vehicular
networks operating under moderate speeds and typical traffic
conditions (44). By modeling the channel access process
as a partially observable Markov decision process and
pairing a dueling Q-network with an LSTM predictor, it
becomes possible to exploit spatial-temporal correlations in
a constantly shifting vehicular scenario. Our results indicate
a notable improvement in performance compared to baseline
IEEE 802.11p, particularly in environments where bursty and
correlated transmissions are significant.

Despite these promising outcomes, there are limitations
that must be acknowledged. When mobility is extremely
high, the prediction horizon of the LSTM is often reduced
to a point where its benefits vanish. The difficulties
inherent in training under partial observability, combined
with the short coherence time of the channel, mean that
the agent’s learned policies can degrade sharply outside of
their training conditions. Additionally, in heavily shadowed
or NLOS scenarios, local channel measurements provide
incomplete information about the environment, constraining
the learning-based protocol to operate at a level similar to
that of legacy techniques. We also note that real hardware
implementations require specialized accelerators to meet sub-
millisecond decisions. (45)

Future research directions could explore federated learning
or distributed training, whereby groups of vehicles share
neural network updates to accelerate convergence and reduce
the training overhead at each node. Another avenue of
improvement is in hybrid solutions that combine model-
based predictions for large-scale mobility patterns with data-
driven neural networks for finer-scale channel fluctuations.
Such hybrid solutions might generalize better to unforeseen
environments, as they preserve some degree of explicit
modeling for macroscopic processes, while still leveraging
deep learning for local channel adaptation (46). Integrating
side information from high-definition maps or infrastructure-
based sensors could further refine predictions of traffic
patterns and channel conditions, leading to a more robust
protocol.

The proposed predictive MAC architecture underscores
the potential of combining machine learning with advanced
channel modeling to tackle the unique challenges of next-
generation vehicular networking. By carefully balancing
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real-time predictions with reinforcement learning policies,
vehicles can achieve proactive, data-driven channel access
decisions that maximize throughput and fairness while
respecting latency constraints. With ongoing innovations in
both the theoretical and practical domains, there is a clear
trajectory toward more adaptive, intelligent MAC protocols
that can handle the evolving demands of connected and
autonomous vehicles. (47–52)
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