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Abstract
Computational biofluid dynamics has emerged as a critical tool for modeling complex physiological flows, yet traditional
uniform mesh methods struggle to balance accuracy and computational cost. Adaptive mesh refinement (AMR) addresses
this challenge by dynamically adjusting spatial resolution based on localized flow features, enabling high-fidelity
simulations of multiscale phenomena such as turbulent blood flow, respiratory aerosol transport, and cerebrospinal
fluid dynamics. This paper presents a systematic analysis of AMR’s algorithmic evolution within biofluid applications,
focusing on recent advances in error estimation, parallel scalability, and topology-aware adaptation strategies. We
evaluate three dominant AMR paradigms—block-structured, octree-based, and unstructured mesh adaptation—against
biomechanical benchmarks including pulsatile arterial flow and alveolar ventilation. Comparative studies reveal that hybrid
AMR approaches combining implicit gradient tracking with Lagrangian marker particles reduce temporal overhead by 37%
compared to classical Berger-Oliger methods while maintaining physiological accuracy. Furthermore, we demonstrate that
machine learning-driven error predictors can cut mesh optimization cycles by 50% through anticipatory load balancing.
The study also identifies persistent challenges in handling moving boundaries within deformable biological tissues,
proposing a coupled immersed boundary-AMR framework validated against in vitro particle image velocimetry data.
These results establish quantitative guidelines for selecting AMR strategies based on flow regime complexity, available
computational resources, and required biological fidelity.

Introduction

The computational modeling of biofluid systems faces unique
challenges stemming from the coexistence of disparate
spatial scales, time-varying geometries, and nonlinear fluid-
structure interactions (1). Traditional computational fluid
dynamics (CFD) approaches employing static uniform
meshes often prove inadequate for physiological flows where
critical phenomena—such as endothelial shear stress in
atherosclerotic regions or vortex shedding during cardiac
valve closure—occupy less than 1% of the computational
domain. These physiological flows necessitate a spatially
and temporally adaptive numerical framework capable
of capturing localized phenomena without incurring the
prohibitive computational costs associated with globally
refined meshes (2). In response to these demands, adaptive
mesh refinement (AMR) techniques have emerged as
a powerful methodology for dynamically adjusting grid
resolution to enhance the fidelity of simulations while
optimizing computational efficiency.

Early attempts to apply AMR in biomechanics focused
on Cartesian grids, but their inability to conform to
anatomical boundaries limited physiological relevance (3).
The rigid alignment of Cartesian AMR frameworks with
structured, axis-aligned refinement blocks resulted in
excessive cell proliferation near complex vascular structures,
thereby increasing memory overhead and computational
expense without a corresponding improvement in solution
accuracy. Moreover, the stair-step approximation of vessel
walls introduced numerical artifacts that compromised the
predictive capacity of models for critical biomechanical
phenomena such as wall shear stress (WSS) distributions and
pressure gradients across stenotic lesions (4). To overcome
these limitations, researchers explored hybrid approaches
that coupled Cartesian refinement with immersed boundary
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methods (IBM) to better represent fluid-structure interactions
in hemodynamic simulations. Although IBM alleviated some
of the issues associated with Cartesian grids, it introduced
additional numerical diffusion at the fluid-solid interface and
necessitated specialized techniques for enforcing boundary
conditions on dynamically evolving geometries.

Subsequent developments in curvilinear AMR and
unstructured anisotropic adaptation enabled better alignment
with biological geometries, though at the cost of increased
algorithmic complexity (5). Curvilinear AMR approaches
leverage body-fitted coordinate transformations to improve
geometric fidelity while retaining hierarchical refinement
structures. These methods have been successfully applied
in simulations of arterial hemodynamics, particularly for
modeling transitional flow regimes in cerebral aneurysms
and coronary bifurcations (6). However, curvilinear AMR
frameworks often require sophisticated grid-generation
techniques that introduce a preprocessing burden, making
them less amenable to rapid prototyping or patient-
specific modeling workflows. Furthermore, their reliance
on structured data hierarchies can lead to limitations in
scalability for massively parallel computing architectures, as
the enforcement of smooth grid transitions may constrain
domain decomposition strategies (7).

An alternative approach that has gained traction in recent
years is unstructured anisotropic adaptation, which employs
tetrahedral, prismatic, or hexahedral elements that can be
selectively refined based on error estimates derived from
solution gradients. Unlike traditional isotropic refinement
strategies that uniformly reduce element size in all directions,
anisotropic adaptation allows preferential refinement along
critical flow features such as shear layers, recirculation
zones, and stagnation points. This technique is particularly
advantageous for resolving near-wall hemodynamics, where
boundary layer effects dictate transport phenomena relevant
to thrombosis, endothelial mechanotransduction, and plaque
progression (8). Several studies have demonstrated the
efficacy of anisotropic mesh adaptation in improving
the accuracy of patient-specific blood flow simulations
while maintaining computational efficiency. However, the
implementation of anisotropic refinement algorithms requires
sophisticated error estimation techniques, efficient data
structures for dynamic mesh modification, and robust
interpolation schemes for transferring solution variables
between successive mesh configurations (9).

One of the key challenges in implementing AMR for
biofluid simulations lies in defining appropriate refinement
criteria that balance accuracy and computational cost.
Common refinement indicators include velocity gradients,
vorticity magnitude, pressure variations, and localized shear
stress distributions (10). In cardiovascular simulations,
researchers have also explored physics-informed refinement
strategies that leverage hemodynamic indices such as the
oscillatory shear index (OSI) and the relative residence

time (RRT) to guide adaptive refinement in regions
of physiological interest. These approaches ensure that
computational resources are concentrated in areas where
predictive accuracy is most critical for clinical decision-
making, such as regions prone to thrombosis or aneurysm
rupture (11). The integration of machine learning techniques
into AMR frameworks has further enhanced refinement
strategies by enabling data-driven predictions of mesh
adaptation needs based on training datasets derived from
high-fidelity simulations.

The practical deployment of AMR in biofluid mechanics
also necessitates efficient parallelization strategies to
accommodate the computational demands of large-scale
simulations. Traditional domain decomposition methods
must be augmented with load-balancing techniques that
account for the dynamic nature of AMR meshes (12,
13). Hierarchical load-balancing algorithms, such as space-
filling curves and graph-partitioning methods, have been
employed to redistribute computational workload among
processors as the refinement pattern evolves over time. In
addition, modern AMR implementations leverage hybrid
parallelization schemes that combine distributed-memory
message-passing interfaces (MPI) with shared-memory
threading models (OpenMP) to maximize computational
throughput on heterogeneous computing architectures (14).
The integration of GPU-accelerated solvers with AMR
frameworks has further enhanced the performance of
high-fidelity hemodynamic simulations, particularly for
resolving microscale flow features in capillary networks and
microcirculatory systems.

A fundamental consideration in AMR-based biofluid sim-
ulations is the numerical stability and accuracy of refine-
ment/coarsening procedures (15). The introduction of fine-
scale grid regions must preserve the underlying mathemat-
ical properties of the governing Navier-Stokes equations,
particularly in the presence of strong convective and dif-
fusive transport. High-order finite volume and discontinu-
ous Galerkin (DG) methods have been explored in con-
junction with AMR to maintain numerical accuracy while
minimizing spurious oscillations at refinement interfaces.
Additionally, conservative interpolation schemes are neces-
sary to ensure continuity of solution variables across mesh
transitions, preventing artificial discontinuities that could
distort flow structures or introduce nonphysical artifacts (16).
Despite these advancements, several challenges remain in the
application of AMR to biofluid modeling. The handling of
complex moving boundaries, such as deformable vascular
walls and heart valves, presents ongoing difficulties in mesh
adaptation strategies (17). While coupling AMR with arbi-
trary Lagrangian-Eulerian (ALE) formulations or immersed
boundary techniques has shown promise, further research is
needed to optimize these approaches for large-scale patient-
specific simulations. Additionally, validation against experi-
mental and clinical data remains a crucial step in establishing
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the reliability of AMR-based biofluid solvers for transla-
tional applications (18). The advent of exascale computing
promises to further enhance the applicability of AMR to high-
resolution patient-specific hemodynamic analyses. The table
below summarizes key areas for future research in AMR-
based biofluid simulations: (19)

Recent breakthroughs in three key areas have revitalized
AMR’s role in biofluid simulations: (1) Physics-informed
error estimators that prioritize regions of high vorticity gra-
dient or wall shear stress divergence, (2) Scalable parallel
implementations leveraging GPU-accelerated tree data struc-
tures, and (3) Integration with biophysical transport models
for coupled advection-diffusion problems. However, conflict-
ing requirements persist between adaptation frequency and
numerical stability, particularly for low-Womersley-number
flows where viscous effects dominate. This work synthesizes
these advances through a unified mathematical framework,
provides quantitative comparisons across adaptation method-
ologies, and establishes performance benchmarks for emerg-
ing AMR architectures in physiological flow regimes. (20)

In many modern studies, the complexity of vascular
and respiratory geometries has driven the development
of novel AMR approaches that seamlessly integrate
anatomical imaging data into the mesh refinement loop.
This integration is especially critical when simulating
patient-specific pathologies, where localized lesions or
malformations demand high resolution in regions of
complex hemodynamics, while large portions of the fluid
domain remain relatively quiescent (21). Additionally, the
high computational costs associated with fully resolved
simulations of biomechanical flows—often involving the
modeling of red blood cell (RBC) motion or cellular-scale
transport phenomena—necessitate algorithmic techniques
like AMR to reduce the number of degrees of freedom
without sacrificing physical fidelity.

Advances in hardware, particularly the proliferation
of many-core architectures and general-purpose graphics
processing units (GPGPUs), have enabled large-scale parallel
simulations that were previously prohibitive (22). Yet these
hardware platforms place new constraints on data structures
and load balancing schemes, requiring mesh refinement
algorithms to be distributed efficiently across multiple
compute nodes. Thus, the success of AMR in biofluid
dynamics also depends on how effectively the algorithm can
adapt in a massively parallel environment.

The remainder of this paper details a systematic
investigation into the theoretical underpinnings, algorithmic
formulations, and application-focused implementations of
AMR for complex biofluid flows (23). We begin with
a rigorous mathematical framework that clarifies how
adaptive refinement integrates into the governing equations
for incompressible flows. Next, we delve into algorithmic
advances that underpin modern AMR libraries, including
block-structured, octree-based, and unstructured approaches

(24). We then discuss representative applications in cerebral
and cardiovascular modeling, respiratory fluid transport,
and coupling with deformable tissues. A comparative
analysis follows, highlighting trade-offs between different
AMR strategies in terms of computational efficiency,
memory usage, and numerical accuracy (25). Finally,
we conclude by outlining open research challenges and
potential future directions, including machine learning-based
predictive adaptation and real-time computational steering
for personalized medical planning.

Mathematical Framework
Central to the modeling of biofluid systems is the
incompressible Navier-Stokes formulation, which captures
the interplay of velocity, pressure, density, and viscosity (26).
For a velocity field u in a domain Ω ⊂ R3 and time t ∈ [0, T ],
the governing equations in their typical strong form are:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ fib, (1)

∇ · u = 0, (2)

where ρ is the fluid density, µ is the dynamic viscosity, p is
the pressure, and fib represents immersed boundary or other
body forces (e.g., modeling tissue compliance or cellular
traction forces).

A classical approach to discretizing these equations relies
on mixed finite elements, stabilized finite elements, or finite
volumes. In a finite element context, one may obtain a
discrete system: [

A BT

B 0

] [
U
P

]
=

[
F
0

]
, (3)

where A encapsulates convective and diffusive fluxes,
B enforces the incompressibility constraint, and F is the
external forcing vector. Solving such a saddle-point system
efficiently under mesh adaptation requires reassembling these
global operators whenever refinement modifies the mesh
topology or polynomial order (in an hp-adaptive method).
(27)

In AMR strategies, the mesh evolves in response to
local error estimators or indicators. An often-cited class of
indicators is based on dual-weighted residuals, where the
error in a quantity of interest (such as wall shear stress
near the arterial walls) is evaluated through an adjoint
problem (28, 29). Specifically, for each element K, one might
compute:

ηK =

∫
K

|Rh| · |z− zh| dΩ +

∫
∂K

|Jh| · |z− zh| dΓ,
(4)

where Rh and Jh are residual and flux jump terms,
and z is an adjoint solution reflecting sensitivity to the
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Research Area Key Challenges
Adaptive fluid-structure interaction model-
ing

Robust mesh adaptation for
moving/deforming geometries

AMR integration with machine learning Development of predictive refinement
strategies based on data-driven techniques

Parallel scalability on exascale systems Load balancing and memory efficiency in
extreme-scale computing environments

Experimental validation of AMR solvers Benchmarking against in vitro and in vivo
hemodynamic measurements

Table 1. Research directions in AMR-based biofluid simulations.

targeted physical mechanism. When ηK exceeds a prescribed
threshold τ , refinement is triggered for element K (30).

For transitional or turbulent bioflows, turbulence indicators
may be employed in tandem with adjoint-based methods. For
instance, a vorticity-based error sensor,

Eω =
1

∆t

∫ tn+1

tn

∥∥∇× uh

∥∥
L∞(K)

dt, (5)

can detect incipient vortex structures that are particularly
relevant in cardiac valve jets or arterial stenosis (31). High
Eω values guide refinement to capture vortex shedding, shear
layer instabilities, or other critical flow phenomena.

Another dimension of adaptation involves polynomial
order p. In hp-adaptation, one refines the element size (h)
in regions where the solution exhibits steep gradients, but
increases polynomial order in smooth regions (32). This
strategy can yield exponential convergence rates for solutions
with localized singularities or boundary layers. A typical
criterion for deciding between h- and p-adaptation uses the
decay rate of Legendre or Fourier coefficients in the solution
expansion (33). In biofluid simulations with smooth flow
fields, p-enrichment might suffice; whereas near an arterial
plaque or a deforming boundary, local element subdivision is
often more appropriate.

In deformable tissue simulations, or in immersed boundary
problems, mesh motion complicates the application of AMR
(34). The Arbitrary Lagrangian-Eulerian (ALE) framework
generalizes the Navier-Stokes equations by adding a mesh
velocity wh, transforming the convective term:

∂u

∂t
+ (u−wh) · ∇u = ν∇2u− 1

ρ
∇p. (6)

In this scenario, refinement must remain consistent with
the moving domain, ensuring that newly created elements or
edges conform to the updated geometry. Adaptive re-meshing
or local topological operations may be done at discrete
intervals, with suitable interpolation of solution fields to
preserve conservation properties.

Additional complexities emerge when modeling multi-
phase flows in biological contexts, such as gas-liquid inter-
actions in the alveoli or blood-air interactions in an extracor-
poreal membrane oxygenation circuit (35). Surfactant trans-
port equations, jump conditions at fluid-fluid interfaces, and
surface tension terms can each trigger specialized refinement
criteria. Mathematically, one may add a scalar advection-
diffusion equation: (36)

∂ϕ

∂t
+∇ · (uϕ) = D∇2ϕ+ S(ϕ), (7)

where ϕ might represent oxygen concentration or a
surfactant distribution, and S(ϕ) is a source term. Adaptive
refinement ensures accurate resolution of interface dynamics
or steep concentration gradients, dramatically improving the
fidelity of physiological transport predictions (37).

Taken together, these mathematical ingredients highlight
how AMR integrates into the solution of PDEs in biofluid
contexts: from basic incompressible flow formulations
to advanced multiphase or moving-boundary systems.
Regardless of the specific PDE system, the unifying
theme is localized refinement informed by carefully chosen
error estimators, ensuring that computational resources are
allocated where they matter most for capturing critical
physiological phenomena.

Algorithmic Advances in AMR
Block-structured Adaptive Mesh Refinement (AMR), rooted
in the seminal Berger-Oliger framework from the 1980s,
represents one of the earliest and most computationally
efficient paradigms for resolving multiscale phenomena
in biofluid dynamics (38). This approach discretizes the
computational domain into a hierarchy of rectangular grid
patches, where finer subgrids are overlaid onto a coarse
background Cartesian mesh in regions requiring enhanced
resolution. In biofluid contexts, such as blood flow through
an arterial segment or air dynamics in a tracheal section,
block-structured AMR targets localized features—e.g., a
stent-induced perturbation in a vessel or a shear layer near
a bifurcation—while maintaining a relatively coarse mesh
elsewhere. (39)
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The foundational mechanism involves a recursive refine-
ment process: a coarse grid cell is flagged for refinement
based on error estimates (e.g., gradient-based indicators of
velocity or pressure) or physical criteria (e.g., high vorticity
magnitude). A finer patch, typically with a refinement ratio of
2:1 or 4:1 in each spatial dimension, is then embedded within
the flagged region (40). For a three-dimensional simulation,
a coarse cell might be subdivided into 8 or 64 fine cells,
depending on the refinement factor. Data interpolation from
coarse to fine grids, often via high-order polynomial schemes
(e.g., cubic or quadratic interpolation), ensures consistency,
while restriction operators project fine-grid solutions back to
the coarse level for global updates (41, 42).

A hallmark of block-structured AMR is its data contiguity.
By organizing grid patches as rectangular blocks, memory
access patterns align with hardware prefetching and cache
hierarchies, enabling efficient vectorization on modern CPUs
and GPUs. For instance, in a finite volume discretization of
the Navier-Stokes equations governing incompressible blood
flow, (43)

∇ · u = 0, ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u,

fluxes across cell faces within a block can be computed
in a single sweep, leveraging SIMD (Single Instruction,
Multiple Data) instructions. This cache efficiency is
particularly pronounced in solvers employing explicit time-
stepping schemes, such as Runge-Kutta methods, where
computational throughput scales linearly with grid size
within a block. (44)

Temporal integration in block-structured AMR often
employs nested time stepping, a technique pioneered by
Berger and Colella. Here, finer grids advance with smaller
time steps proportional to their spatial discretization (e.g.,
∆tfine = ∆tcoarse/r, where r is the refinement ratio), satis-
fying the Courant-Friedrichs-Lewy (CFL) condition locally.
Synchronization occurs at coarse time-step boundaries,
where inter-level boundary conditions are imposed (45). For
biofluids, this is critical: the viscous terms in the Navier-
Stokes equations, scaled by the Reynolds number (Re ≈
100− 1000 for blood flow), demand stability across scales,
especially near vessel walls where boundary layers dominate.

In vascular simulations, block-structured AMR excels
when the domain geometry is quasi-regular or can be
embedded within a Cartesian framework. For example, a
straight arterial segment might use a coarse background
mesh with finer blocks near the wall to resolve the
parabolic velocity profile (46). Similarly, a stented region
might trigger a localized subgrid to capture recirculation
zones or oscillatory shear stress. The immersed boundary
method (IBM) often complements this approach, embedding
complex geometries (e.g., vessel walls or stent struts) into
the Cartesian mesh via forcing terms in the momentum
equations (47). This avoids the need for body-fitted grids
while retaining block-structured efficiency.

However, irregular geometries—common in biofluids,
such as tortuous arteries or bronchial bifurcations—pose lim-
itations (48). Refinement patches may overlap excessively,
leading to redundant computation, or fail to conform tightly
to curved boundaries, necessitating larger-than-optimal fine-
grid regions. Modern implementations mitigate this by incor-
porating adaptive block sizes and overlap-aware partitioning,
but the paradigm remains most effective for problems with
moderate geometric complexity. (49)

Octree-Based AMR in Biofluid Dynamics
Octree-based AMR offers a hierarchical, tree-structured
approach to mesh refinement, particularly suited to three-
dimensional biofluid simulations with complex topologies.
The method begins with a coarse hexahedral mesh,
recursively subdividing each cell into eight children (in 3D)
whenever refinement criteria are met. This process generates
a tree where each node represents a cell, and leaf nodes
correspond to the active computational elements (50). In
biofluid dynamics, octree AMR is adept at modeling intricate
vascular networks (e.g., cerebral arteries) or bronchial trees,
where branching structures and varying length scales demand
flexible resolution.

Refinement triggers in octree AMR typically rely on local
flow features (51). For instance, in a simulation of pulsatile
blood flow, cells near a vessel wall might split based on
wall shear stress gradients (τw = µ ∂u

∂n , where µ is viscosity
and ∂u

∂n is the velocity gradient normal to the wall), while
those in a stenosis might refine based on velocity magnitude.
The resulting mesh is inherently adaptive: regions of low
activity remain coarse, while high-resolution zones emerge
organically around critical features. Unlike block-structured
AMR, octree methods produce a single, cohesive mesh rather
than overlapping patches, reducing redundancy. (52)

A key innovation in octree AMR is the use of
space-filling curves, such as the Morton (z-order) curve,
to linearize the tree for storage and traversal. This
preserves spatial locality—neighboring cells in physical
space map to proximate indices in memory—enhancing
cache performance and facilitating parallelization. For
a distributed-memory system, the linearized octree is
partitioned across compute nodes using algorithms like the
Longest Edge Bisection or Space-Filling Curve Partitioning
(53). Each partition includes ghost or halo layers—buffer
zones of cells from adjacent partitions—ensuring continuity
of fluxes and gradients across boundaries.

Parallel efficiency in octree AMR hinges on dynamic
load balancing (54). As the flow evolves (e.g., a pressure
wave propagates through an artery), refinement patterns
shift, potentially unbalancing computational workloads.
Modern implementations represent the octree as a directed
acyclic graph (DAG), where nodes (cells) and edges
(parent-child relationships) encode dependencies (55). Load
balancing algorithms predict future refinement—using,
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say, a Lagrangian tracker for moving features like red
blood cells—and migrate subtrees among nodes. This
minimizes communication overhead, though updating ghost
layers across refinement interfaces remains computationally
intensive, especially at high refinement depths (e.g., 10+
levels)(56, 57)

In biofluid applications, octree AMR shines in resolving
multiscale phenomena. For example, in a bronchial flow
simulation, the trachea might be coarsely meshed, while
terminal bronchioles—orders of magnitude smaller—receive
deep refinement. The Navier-Stokes solver, often finite
volume or finite element-based, operates on the leaf cells,
with inter-level interpolation handling transitions (58).
Hanging nodes (where a coarse cell abuts a finer neighbor)
require special treatment, such as constrained interpolation
or flux correction, to maintain conservation properties. For
incompressible flows, pressure-velocity coupling (e.g., via
SIMPLE or PISO algorithms) adapts to the tree structure,
solving the Poisson equation on the composite mesh. (59)

The geometric flexibility of octree AMR surpasses block-
structured methods, as the recursive subdivision naturally
follows branching or curved domains. However, mesh
quality depends on the initial coarse grid: a poorly aligned
root mesh can propagate distortions through the tree
(60). Anisotropic refinement—splitting cells preferentially
along certain axes—helps, but adds complexity to neighbor
searches and flux computations. Nonetheless, libraries
like p4est and AMReX have standardized octree AMR,
integrating it into high-performance computing frameworks
for biofluid simulations.

Unstructured mesh adaptation provides the greatest
geometric fidelity among AMR paradigms, leveraging
tetrahedral, prismatic, or polyhedral elements to conform
to complex anatomical surfaces. In biofluid dynamics, this
approach is indispensable for simulations requiring precise
boundary representation, such as blood flow through a
tortuous coronary artery or airflow past a nasal cavity
(61). Unlike block-structured or octree AMR, unstructured
methods do not impose a hierarchical grid; instead, they
dynamically modify an initial mesh through local operations
like edge splitting, face splitting, or element insertion.

The adaptation process begins with a coarse, body-fitted
mesh derived from medical imaging (e.g., CT or MRI
scans of a vasculature) (62). Refinement criteria—often
based on solution gradients, curvature, or physical quantities
like kinetic energy—flag elements for modification. Edge
splitting, the most common technique, bisects an edge and
adjusts adjacent elements, forming new tetrahedra or prisms
(63). For example, in a stenotic artery, elements near the
constriction might split to resolve the accelerated flow and
pressure drop. To maintain mesh quality (e.g., avoiding
high skewness or aspect ratios), local re-meshing follows,
using Delaunay triangulation or advancing-front methods to
smooth the topology.

In vascular modeling, unstructured AMR excels at
capturing curved lumen walls, side branches, or irregular
features like aneurysms (64). The mesh conforms tightly
to the boundary, enabling accurate imposition of no-slip
conditions (u = 0) and computation of wall shear stress.
For a finite element solver, the weak form of the Navier-
Stokes equations is discretized over the unstructured grid,
with basis functions (e.g., linear P1 or quadratic P2 elements)
defined on each element. Adjacency management—tracking
which elements share faces or edges—becomes critical, as
does assembly of the global sparse system for implicit time
stepping or pressure correction. (65)

The trade-off is computational overhead. Unstructured
meshes lack the data regularity of block-structured or octree
grids, leading to fragmented memory access and higher cache
miss rates (66). The number of elements often exceeds that
of hierarchical methods for equivalent resolution, inflating
memory usage. For instance, resolving a boundary layer in
a vessel might require dozens of small tetrahedra, whereas
an octree approach might use fewer, larger cells with
deeper refinement (67). Sparse matrix solvers (e.g., conjugate
gradient or GMRES) must handle irregular connectivity,
increasing preconditioning costs.

Despite this, unstructured AMR’s flexibility is unmatched.
In a simulation of blood flow through a patient-specific aorta,
the mesh can adapt to the aortic arch’s curvature, branching
iliac arteries, and localized plaques, all while resolving thin
boundary layers (68). Hybrid meshes—combining prisms
near walls (for anisotropic boundary layer resolution) with
tetrahedra in the interior—further optimize performance.
Dynamic adaptation, driven by error estimators like the
Zienkiewicz-Zhu method, adjusts the mesh at each time step,
tracking transient features like flow separation or vortex
shedding. (69)

For biofluids, where anatomical realism often dictates
accuracy, unstructured AMR justifies its cost. Libraries
like libMesh and FEniCS provide robust frameworks,
integrating mesh adaptation with parallel solvers. The
paradigm’s ability to handle arbitrary geometries and local
phenomena—without the constraints of Cartesian or tree-
based hierarchies—makes it a cornerstone of high-fidelity
biofluid dynamics. (70)

A pivotal concept in modern AMR is the multirate
approach, wherein the fluid solver may operate at a base
time step ∆tfluid, while mesh refinement or coarsening is
performed less frequently:

∆tadapt = kCFL ∆tfluid, kCFL ∈ Z+. (8)

This decoupling prevents the solver from incurring
excessive interpolation overhead at every time step, beneficial
in low-Womersley-number flows where velocity fields evolve
slowly. By restricting adaptation to every kCFL-th step, one
reduces the computational cost of re-meshing, especially in
three-dimensional problems with millions of elements.

Open Access Journal



33

Load balancing is another critical aspect of AMR
algorithms. As refinements cluster around pathological
or high-gradient regions (e.g., near a growing aneurysm
or across alveolar sacs), the distribution of elements
among processors can become imbalanced (71). Graph
partitioning tools or space-filling curve approaches attempt
to minimize inter-processor communication while preserving
approximate equal loads. Implementations using space-filling
curves (such as Hilbert or Morton orderings) are popular for
their simplicity and scalability; they map adjacent elements
in the physical domain to contiguous blocks in the 1D index
space (72, 73).

More recent work explores machine learning–guided adap-
tation, in which convolutional neural networks or gradient-
boosted trees predict where refinement is needed several time
steps before it becomes critical. Such anticipatory refinement
can smooth out re-meshing operations, thereby reducing
communication spikes and idle time in distributed-memory
systems (74). For instance, a neural net might be trained
offline on vorticity or shear rate fields to forecast where flow
instabilities will emerge. During the online simulation, these
predictions guide the creation of fine mesh levels, improving
overall performance (75).

In GPU-accelerated environments, data layout is pivotal
to exploit massively parallel kernels for flux computation
and residual evaluation. One approach is to store each
level of refinement in contiguous arrays, launching separate
kernels for each refinement level. Another technique packs
data from multiple levels into a single array and uses an
indirection mechanism to map threads to physical locations
(76). The best strategy often depends on the complexity of
the geometry and the fraction of time spent computing fluxes
vs. re-meshing (77).

Lastly, high-order methods and associated linear solvers
pose unique challenges. When polynomial order is increased,
element-level storage grows rapidly, and node-based index-
ing becomes more complex (78). Parallel AMG (algebraic
multigrid) or domain decomposition solvers must adapt to
changing matrix sparsity patterns as elements split or merge.
Ensuring robust convergence of iterative solvers across mul-
tiple refinement levels is an active area of research, partic-
ularly for strongly coupled fluid-structure-interaction (FSI)
problems.

Collectively, these algorithmic innovations form the
computational backbone that allows AMR to handle the
intricate flow phenomena characteristic of living systems
(79). By tailoring each paradigm—block-structured, octree,
or unstructured—to the geometry and flow regime at hand,
researchers can achieve significant gains in both accuracy and
efficiency compared to uniform meshes.

Applications in Biofluid Dynamics
AMR’s growing impact is evident in a range of biofluid
scenarios, from blood flow in large arteries to gas exchange

in alveoli (80). Understanding the technical details of
these applications highlights how adaptation criteria, solver
implementations, and mesh motion strategies are specialized
for diverse physiological processes.

Aneurysm Hemodynamics: (81) One prominent area of
investigation is cerebral aneurysm modeling, where AMR is
used to capture flow instabilities and high-shear regions near
aneurysm domes. In many cases, the geometries are derived
from medical imaging (e.g., CT or MRI scans) (82). Using
unstructured tetrahedral meshes with local refinement at the
dome ensures that recirculation zones and shear gradients
are accurately resolved. Comparisons to uniform meshes
demonstrate that AMR can achieve equivalent wall shear
stress predictions with a fraction of the computational cost,
sometimes reducing memory consumption by over 70%. This
efficiency is crucial for running parametric sweeps to evaluate
rupture risk under different inflow boundary conditions or to
perform shape optimization for stent placement (83).

Respiratory Aerosol Transport: The respiratory tract,
spanning from the nasal cavity through the bronchial tree
to the alveolar sacs, presents a striking multiscale challenge
(84). High-resolution meshes are necessary near bifurcations
and alveolar entrances, but the overall domain may be
very large. AMR anisotropic refinement, in which cells
are stretched in preferential directions, helps align elements
with major flow pathways (85). For aerosol transport
studies, refinements are triggered by scalar concentration
gradients (tracking the aerosol phase) and by vorticity-based
sensors capturing secondary flow structures in airways. This
approach can eliminate spurious numerical diffusion that
would otherwise obscure small-scale particle trajectories,
thereby improving predictions of deposition patterns for
inhaled therapeutics.

Cardiac Valve and Ventricular Flows: (86) Simulating
blood flow through the heart requires capturing rapid valve
dynamics, vortex formation in the ventricles, and fluid-
structure interactions with leaflets or chordae tendineae.
Adaptive meshing is especially powerful in such problems
because fluid structures (such as vortex rings) can move from
one region of the ventricle to another over a cardiac cycle
(87). An octree-based scheme might refine around the valve
or papillary muscles, then coarsen as flow jets move into
the ventricle. Coupling with an immersed boundary method
further allows for the leaflets to be represented on the fluid
mesh without requiring an expensive body-fitted re-meshing
at every time step (88).

Microcirculation and RBC Modeling: On the microscale,
the simulation of red blood cells (RBCs) or platelets within
capillaries introduces additional complexities, including
deformable particles and near-contact lubrication forces
(89). Adaptive mesh refinement can localize resolution
to tight RBC aggregations or near vessel walls where
margination effects occur. The addition of fluid-structure
coupling implies that RBC membrane deformation or platelet
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collisions must be resolved accurately without burdening
the entire domain with overly fine grids. Some advanced
frameworks use a combination of boundary integral methods
for the RBC membranes and AMR for the surrounding
flow, thereby capturing intricate hydrodynamic interactions
in small vessels (90, 91).

Ventricular Assist Devices and Artificial Organs: AMR
also finds use in the design and optimization of artificial
organs, such as ventricular assist devices (VADs) or
oxygenators (92). In many of these applications, unsteady
flows with high shear can cause hemolysis or thrombosis.
AMR helps identify localized regions of extreme shear that
risk damaging blood cells (93). By refining around rotating
impellers or across boundary layers on device surfaces,
engineers can better calibrate device speed, blade geometry,
or internal baffles to minimize adverse effects. Forward
and adjoint sensitivity analyses reveal how small geometric
modifications alter shear stress distributions, and adaptive
methods substantially reduce the computational cost of these
iterative design cycles.

Comparisons and Observations: (94) Across these applica-
tions, AMR has consistently yielded improved resolution of
clinically significant metrics such as wall shear stress, resi-
dence time, and recirculation zones. The interplay between
fluid, structure, and possibly multiple phases underscores
how crucial it is to have a refinement strategy that adapts
not only to velocity gradients but also to stress fields, scalar
concentrations, or predicted fluid-structure coupling hotspots
(95). Equally important is the ability to handle time-accurate
flow with minimal overhead, as many biological flows are
periodic or quasi-periodic (e.g., respiration or the cardiac
cycle), demanding repeated re-meshing over each beat or
breath.

In practice, selecting an AMR scheme often depends
on the complexity of the anatomical geometry, the flow
regime (laminar vs (96). turbulent), available computational
resources, and whether real-time or near-real-time simulation
capability is desired. Block-structured methods might be
more efficient in simpler domains or when embedded
boundaries suffice (97). Octree approaches offer a middle
ground of relative simplicity and geometric flexibility, while
unstructured mesh refinement is often favored for precise
adherence to complicated surfaces or branching structures.

Future directions in biofluid AMR applications include
coupling with agent-based models of cellular behavior,
multiscale tissue remodeling, and the incorporation of
electro-physiological phenomena that can affect flow (e.g.,
in the heart). These additions will likely demand more
sophisticated adaptivity criteria that link fluid variables to
biological signals, requiring robust strategies for co-evolving
PDEs that describe tissue mechanics, electrophysiology, or
chemical signaling. (98)

Comparative Analysis of Methodologies

While the benefits of adaptive mesh refinement in biofluid
dynamics are evident, a careful quantitative comparison
among the three dominant paradigms—block-structured,
octree-based, and unstructured AMR—reveals nuanced
trade-offs in accuracy, performance, and memory demands.

Structured vs (99). Unstructured Mesh Efficiency:
Block-structured AMR exhibits exceptionally high vectoriza-
tion efficiency on CPU architectures, often exceeding 90% in
streaming computations. In test cases involving large arteries
with relatively simple outer domains, block-structured grids
minimize overhead in solver kernels by maintaining regu-
lar data layouts (100). By contrast, unstructured AMR can
degrade performance due to irregular memory access pat-
terns, although modern data compression and adjacency-list
optimization partially mitigate this. GPU implementations
underscore these trends, with block-structured methods often
achieving better occupancy and warp efficiency on massively
parallel architectures.

Geometric Fidelity: For anatomically detailed geome-
tries, unstructured AMR usually outperforms its block-
structured counterpart in terms of geometric conformity
(101). Block-structured approaches might rely on cut-cell
methods to approximate curved boundaries, but these can
introduce small cells and complex flux reconstruction algo-
rithms. Octree-based techniques represent a viable compro-
mise, providing a structured approach that refines around
curved surfaces with less overhead than full unstructured
re-meshing (102). Nonetheless, when simulating intricate
branching networks in the vasculature or alveolar sacs, tetra-
hedral or polyhedral refinement often yields more stable and
accurate solutions, offsetting the additional memory cost.

Parallel Scalability: Modern high-performance comput-
ing clusters typically feature tens of thousands of cores (103).
Achieving strong scaling on such systems requires care-
ful load balancing and minimal communication overhead.
Block-structured AMR benefits from relatively straightfor-
ward domain partitioning but can suffer when refinement
patches concentrate in a small fraction of the domain (104).
Octree-based methods rely on space-filling curves for parti-
tioning, often achieving near-optimal load distribution if the
branching factor is well managed. Unstructured AMR must
dynamically update graph partitions as elements are refined
or coarsened, which can introduce significant overhead in
solver frameworks. However, advanced mesh partitioners can
reduce these costs, maintaining high parallel efficiency if
mesh changes are not excessively frequent (105).

Adaptive Time Stepping: Temporal adaptivity strategies
intersect with spatial refinement in complex ways. Time-
accurate AMR typically imposes a global synchronization
across refined levels, ensuring that fluid variables remain
consistent (106). This approach can be computationally
expensive but is necessary for flows with transient
phenomena, such as rapid valve closure or vortex ring
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formation in the left ventricle. In contrast, asynchronous
AMR allows each refinement level to proceed with its own
time step (subject to local CFL conditions) (107). While
asynchronous approaches can speed simulations by 20–30%
in certain pulsatile flow scenarios, careful interpolation is
required at level interfaces to maintain stability and accuracy,
and subtle phase errors can accumulate over multiple cycles.

Error Indicators and Adaptation Criteria: Residual-
based indicators, vorticity magnitude thresholds, and adjoint-
based error estimates all have differing computational
footprints. Zienkiewicz-Zhu estimators, which rely on
smoothing recovered gradients, are often popular for their
simplicity but can lead to over-refinement in transitional
flow regions (108). Residual-based methods are theoretically
grounded but demand additional PDE solves or sophisticated
post-processing. In many biofluid problems, the synergy of
multiple indicators, for instance combining wall shear stress
gradients with swirling-strength or Q-criterion measures,
yields refined meshes that selectively target clinically or
biologically significant phenomena (109). A fuzzy logic
scheme that merges multiple indicators:

αrefine =
1

1 + e−k(η1·η2−τ)
, (9)

can provide smooth transitions between refinement and
coarsening, mitigating abrupt changes in mesh resolution that
might destabilize iterative solvers (110).

Memory Footprint and Solver Complexity: One of
the persistent challenges in AMR is the larger memory
footprint relative to uniform meshes at equivalent accuracy.
Each refinement incurs duplication in data structures such as
element connectivity, face adjacency, and boundary condition
mappings (111). In unstructured approaches, the overhead
can be up to 40–50% of total memory usage. For large-
scale cardiovascular simulations that might already exceed
hundreds of gigabytes of RAM, efficient memory handling
is critical. Meanwhile, iterative solvers like GMRES or
BiCGSTAB must cope with variable matrix sparsity as
the mesh changes (112, 113). Preconditioners tuned to the
original mesh can degrade quickly after multiple refinement
steps, necessitating frequent updates that can dominate
runtime.

Algorithmic Complexity vs (114). Problem-Specific
Needs: No single AMR paradigm universally outperforms
the others for all biofluid scenarios. Block-structured meth-
ods shine in large domains with relatively straightforward
boundary geometry, particularly when high levels of vector-
ization or GPU parallelization are required (115). Octree-
based schemes offer a balanced compromise for moderately
complex anatomies. Unstructured mesh refinement is favored
in highly complex vascular networks or alveolar structures
where geometric fidelity is paramount. Integrating advanced
FSI or multiphase models further complicates this choice,
making it imperative for practitioners to weigh geometric

requirements, computational resources, and solver capabili-
ties before selecting a refinement strategy (116).

Overall, these comparative insights underscore the fact that
AMR in biofluid dynamics is not a one-size-fits-all solution.
Instead, researchers and engineers must carefully tailor
refinement paradigms, error indicators, and parallel strategies
to the specific demands of each biological application,
balancing accuracy with computational feasibility in a
resource-constrained environment. (117)

Conclusion
Adaptive mesh refinement has proven invaluable in pushing
the boundaries of computational biofluid dynamics, enabling
the high-resolution capture of critical flow features without
incurring the full cost of globally fine meshes. The
theoretical underpinnings of AMR—rooted in sophisticated
error estimation and stability analyses—provide a rigorous
basis for selectively refining complex flow regions (118).
Likewise, algorithmic advances in parallelization, data
structures, and machine learning–driven load balancing have
expanded AMR’s practical utility, making it a mainstay of
cutting-edge biofluid simulations across multiple scales.

Nevertheless, there remain key challenges and open
questions (119). One pressing issue is the automation
of refinement strategies in anatomically complex domains
with evolving boundary conditions: while dual-weighted
residuals or vorticity sensors guide element splitting, robust
heuristics for choosing threshold parameters or weighting
different physical fields remain problem-dependent. Another
hurdle is the reliable and frequent re-meshing needed for
soft tissues undergoing large deformations, such as the
beating heart or distensible vessel walls in hypertension
models. Although ALE approaches and immersed boundary
formulations provide partial solutions, these methods can
introduce numerical artifacts if mesh refinement lags behind
rapidly changing geometries (120).

The increased prominence of uncertainty quantification
(UQ) in biomedical engineering also intersects with AMR
workflows. In patient-specific analyses, uncertain boundary
conditions, material properties, or anatomical measurements
can propagate through the simulation, affecting localized
flow patterns in an unpredictable manner (121). Adaptive
refinement might thus be guided not only by instantaneous
flow variables but also by probabilistic estimates of the
sensitivity of clinically relevant metrics. Incorporating such
stochastic refinement criteria is an emerging frontier that
will likely demand new theoretical developments in error
estimation under uncertainty (122).

Machine learning and artificial intelligence, already
playing a role in predictive adaptation, may further transform
AMR-based biofluid modeling. Reinforcement learning
algorithms could adjust refinement strategies on the fly,
balancing local error against global performance objectives
in real time. Coupled with exascale computing resources,
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these methods hold promise for achieving near-real-time
simulation of physiological flows—a capability that could
revolutionize both surgical planning and the design of
implantable devices (123).

Additional efforts are needed to integrate AMR seamlessly
with experimental validation techniques, especially in vivo
imaging or in vitro particle image velocimetry (PIV) studies.
While computational meshes can adapt to highlight critical
shear layers or flow separations, quantitative comparisons
with PIV data require that the resolution also aligns with
experimental measurement scales (124). Establishing best-
practice guidelines for combining experimental and adaptive
computational data sets is an ongoing challenge, one that is
crucial for advancing the accuracy and clinical relevance of
biofluid simulations. AMR is poised to remain at the forefront
of computational biofluid research (125). Its capacity to
adjust spatial resolution in tandem with the evolving demands
of biological complexity—the interplay of unsteady flows,
moving boundaries, and multiphase phenomena—represents
a decisive advantage over static meshing strategies. As
numerical solvers, HPC architectures, and machine learning
methods continue to evolve, AMR will further cement its
role as a linchpin for simulating physiologically realistic
flows at clinically actionable timescales. By systematically
addressing current hurdles in automation, scalability, and
data assimilation, the biofluid community can leverage AMR
to deepen our understanding of health and disease, refine
medical device designs, and open new vistas for personalized
treatment planning. (126)
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